

## Enhancing Onsite Battery Evaluation Practices

### Objective

To reduce maintenance costs and downtime by improving onsite battery evaluation practices. Enable teams to accurately assess battery state-of-health, isolate faults at the module or cell level, and make informed decisions about repair, reuse, or retirement.

### Key Points

#### Operators are the first line of defense.

Maintenance teams rely on operators to detect and report performance issues, but this approach can delay root cause identification.

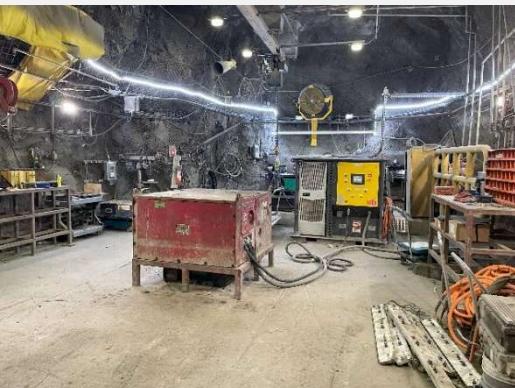
#### Not all degradation is equal.

Batteries must be evaluated to determine whether the issue is isolated to a single cell or module—or if a full pack replacement is warranted.

#### Onsite repair capability exists but is underused.

Cell-level replacement can now be done onsite, but inconsistent evaluation standards limit its application and impact.




### Implementation

Maintenance staff are being trained to distinguish between localized cell or module failures versus systemic pack degradation—prioritizing actionable evaluations over blanket diagnostics.

A site-specific asset tracking spreadsheet now logs preventative maintenance (PM) activity, battery capacity trends, and observed faults, helping identify repeat issues, flag at-risk batteries, and guide end-of-life decisions.

“We have our own 'battery team' out of necessity, but it was a key enabler for the change management. Cross-training and skilling were critical”

*Maintenance Superintendent*



### Progress to Date

The battery maintenance bay has been active since day one, with over a decade of refinement behind its practices. Technicians now rely heavily on laptops and BMS tools to guide diagnostics and track battery performance.

While the in-house team remains highly capable, ongoing questions persist about the long-term balance between internal ownership and increased OEM support through service contracts or embedded roles.